

(12) United States Patent Berend et al.

(54) CLEATED FOOTWEAR

(71) Applicant: NIKE, Inc., Beaverton, OR (US)

Inventors: **Thomas Berend**, Beaverton, OR (US); Paul J. Francis, Beaverton, OR (US); Shane S. Kohatsu, Portland, OR (US); Ryan R. Larson, Portland, OR (US); Dov Michael Lashmore, Milwaukie, OR (US); Troy C. Lindner, Portland, OR (US); Kenneth Link, Portland, OR

(US); Randall S. Wolfe, Beaverton, OR

(US)

(73) Assignee: **NIKE, Inc.**, Beaverton, OR (US)

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35

U.S.C. 154(b) by 292 days.

(21)Appl. No.: 14/159,078

(22)Filed: Jan. 20, 2014

(65)**Prior Publication Data**

> US 2014/0202042 A1 Jul. 24, 2014

Related U.S. Application Data

- (60)Provisional application No. 61/755,215, filed on Jan. 22, 2013.
- (51) Int. Cl. A43C 15/16 (2006.01)A43B 13/14 (2006.01)(Continued)
- (52)U.S. Cl. CPC A43B 13/141 (2013.01); A43B 13/223 (2013.01); A43C 13/04 (2013.01); A43C **15/162** (2013.01); A43D 2200/60 (2013.01)
- Field of Classification Search CPC A43C 13/04; A43C 15/16; A43C 15/162; A43B 5/007

(45) Date of Patent: Aug. 16, 2016

US 9,414,642 B2

See application file for complete search history.

(56)References Cited

(10) Patent No.:

U.S. PATENT DOCUMENTS

5/1950 McCallum 3,352,034 A * 11/1967 Braun A43C 15/162 36/67 D

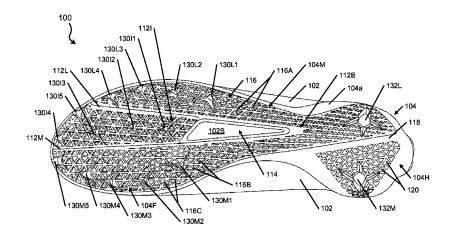
(Continued)

FOREIGN PATENT DOCUMENTS

AU JP 8665282 A 2/1983 2000236913 A 9/2000 (Continued)

OTHER PUBLICATIONS

International Search Report mailed Jul. 1, 2014 in PCT Application PCT/US2014/012172.


(Continued)

Primary Examiner — Marie Bays (74) Attorney, Agent, or Firm — Banner & Witcoff, Ltd.

ABSTRACT (57)

Cleat structures, e.g., for football shoes, may include: (a) a cleat base: (b) a cleat free end; and (c) a concave side edge and at least two additional side edges extending between the cleat base and the cleat free end. Such cleats may be incorporated into sole structures (e.g., outsole components) that have one or more of: a base plate having a V-shaped support structure with lateral and medial support members extending forward from a base support area located in a heel or rear midfoot area of the outsole component; a base plate having a matrix structure with recesses or openings formed between rib elements that make up the matrix structure; and/or a base plate having a rear heel support. The cleats and base plates may be made, at least in part, as unitary, one-piece constructions, using selective laser sintering or other three-dimensional printing and/or rapid manufacturing additive fabrication techniques.

31 Claims, 16 Drawing Sheets

US 9,414,642 B2

Page 2

(51)	T 4 Cl					2011/0078022	A 1 %	4/2011	C1: A 42D 5/02
(51)	Int. Cl.					2011/0078922	A1 *	4/2011	Cavaliere A43B 5/02 36/54
	A43C 1.	3/04		(2006.01)		2011/0088285	A 1	4/2011	Dojan et al.
	A43B 1.	3/22		(2006.01)		2011/0088283			Weidl et al.
	11 /515 1.	.,		(2000.01)		2012/0011744			Bell et al.
(50)			Deferen	ices Cited		2012/0011744			Gerber
(56)			Keieren	ices Chea		2012/0030740			Farris et al.
II C I			PATENT DOCUMENTS			2013/0055599			Peikert A43B 7/125
		U.S	PALENT	DOCUMENTS		2015/0055555		5,2015	36/30 R
	2 050 720	A alc	1/1075	D1	A 42C 15/165	2013/0067778	A1	3/2013	Minami
	3,859,739	A	1/19/3	Dassler	36/67 D	2013/0125423	A1	5/2013	Droege et al.
	4,364,188	4	12/1092	Turner et al.	30/07 D	2013/0160328	$\mathbf{A}1$	6/2013	Hatfield et al.
	4,586,274		5/1986			2013/0185960	A1*	7/2013	Schmid A43C 15/161
	D322,355		12/1991						36/127
	6,233,850			Peabody	A43C 15/162	2013/0340295			Adami et al.
	0,233,630	Di	3/2001	1 cabody	36/127	2014/0026441			Stauffer
	6,421,933	B1	7/2002	Zamprogno	30/12/	2015/0082669	A1*	3/2015	Peikert A43B 7/125
	6.705.027			Campbell	A43B 5/001				36/30 R
	0,.00,02.	2.	5,200.	cumpour minim	36/127	2015/0181977	A1*	7/2015	Klug A43B 13/26
	6,810,605	B2	11/2004	Nakano et al.					36/134
	6,904,707		6/2005	McMullin					
	6,973,745	B2	12/2005	Mills et al.		FC	REIGI	N PATE	NT DOCUMENTS
	7,086,183	B2 *	8/2006	Wood	A43C 15/167				
					36/128		007275		10/2007
	7,347,011	B2		Dua et al.		RU		804 C1	12/1995
	7,941,945	B2 *	5/2011	Gerber		WO		182 A1	6/2003
					36/134	WO 20	006122	832 A2	11/2006
	D688,037			Dekovic et al.			OTI	IED DIT	BLICATIONS
	8,720,086	B2 *	5/2014	Auger		%C -t Et C I			
					36/134				nveils New 3D Printed Super Bowl
	3/0093926			Auger et al.			from v	vww.3de	rs.org, published Jan. 12, 2014, 11
2006	5/0021259	Al*	2/2006	Wood		pages.	Thind I	Zaatha 11	Clast Duilt Hains 2D Drinting?
2000	2/00000634	4.1	5/2000	C-11	36/128				Cleat Built Using 3D Printing,"
	8/0098624			Goldman					ublished Feb. 27, 2014, 11 pages. g Innovation," retrieved from
	9/0100716			Gerber	A 42C 15/162				14 Inside the Sneakerbox, Inc., 7
2009	9/0235558	A1"	9/2009	Auger			DOX.CO	m, © 20	14 Inside the Sheakerbox, Inc., /
2017	V/0126044	A 1 2 ^b	5/2010	Dania	36/30 R	pages.			
2010	0/0126044	A1 *	5/2010	Davis		* -:411			
					36/108	* cited by exar	niner		

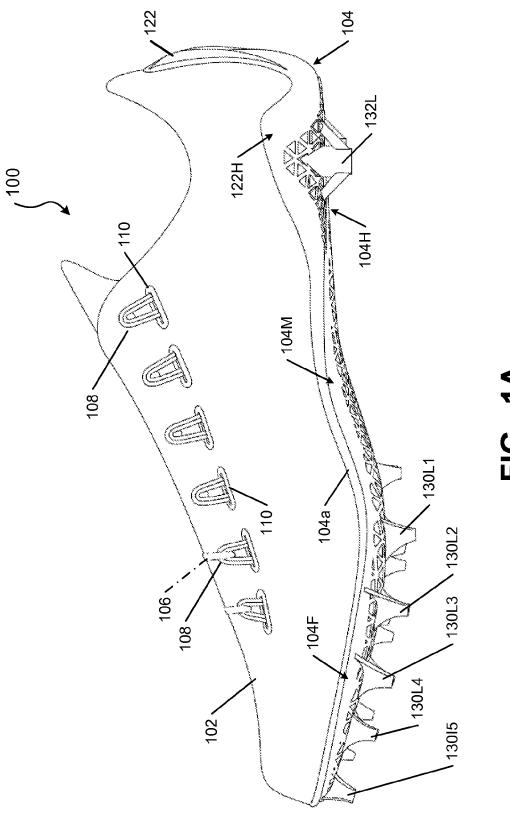


FIG. 1A

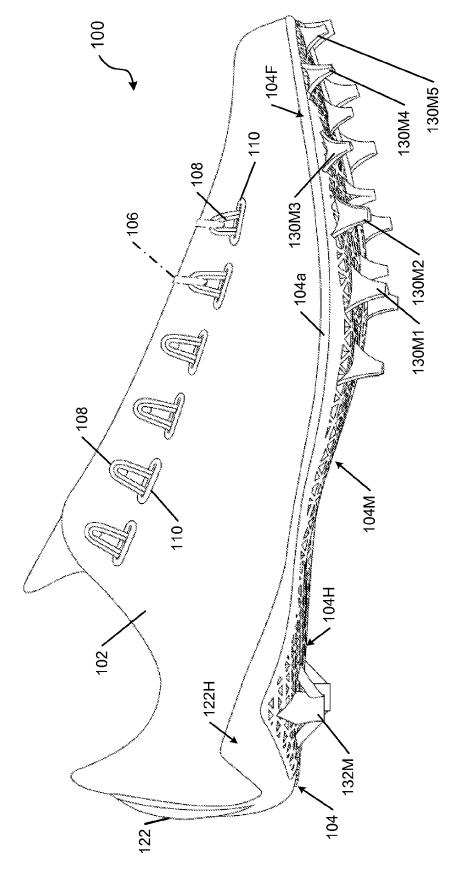


FIG. 1B

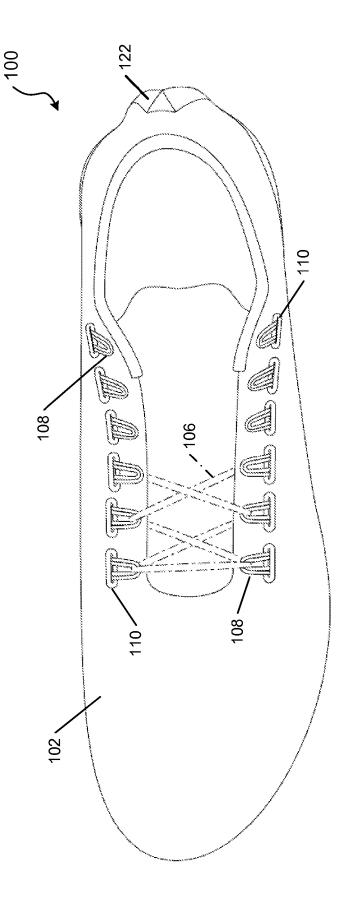


FIG. 1C

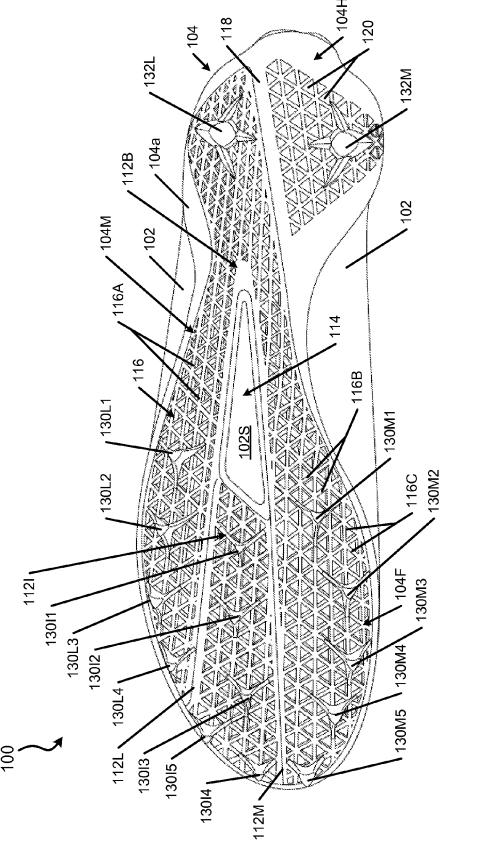


FIG. 1D

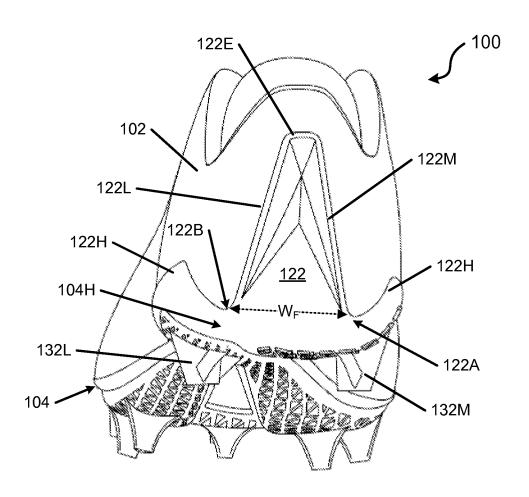
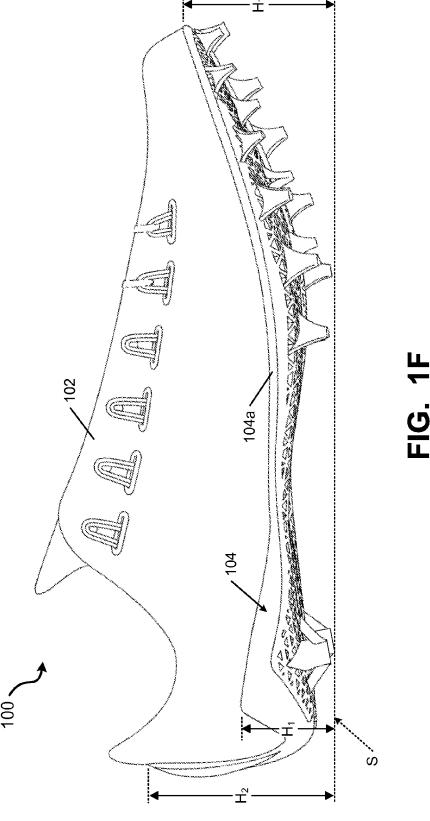
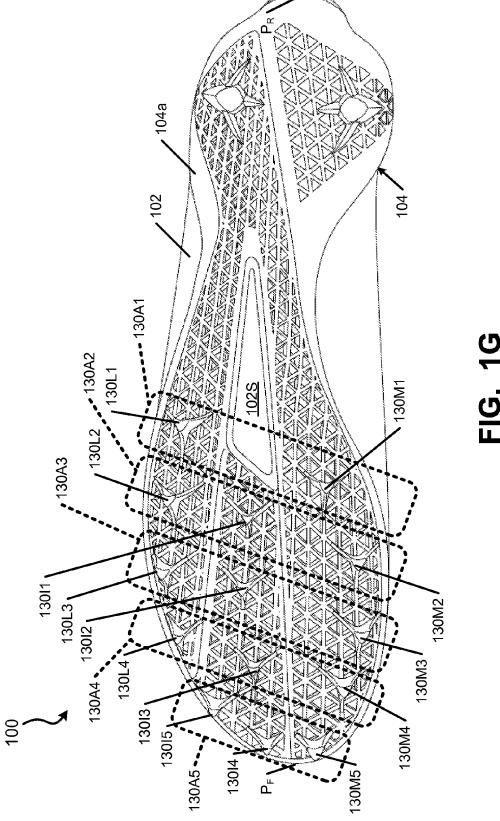




FIG. 1E

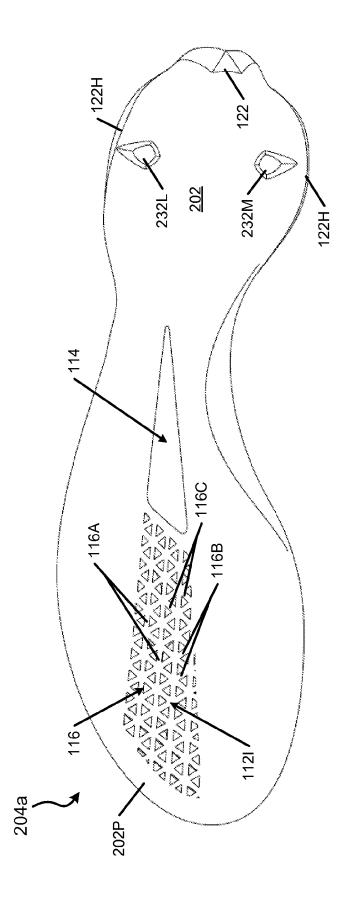
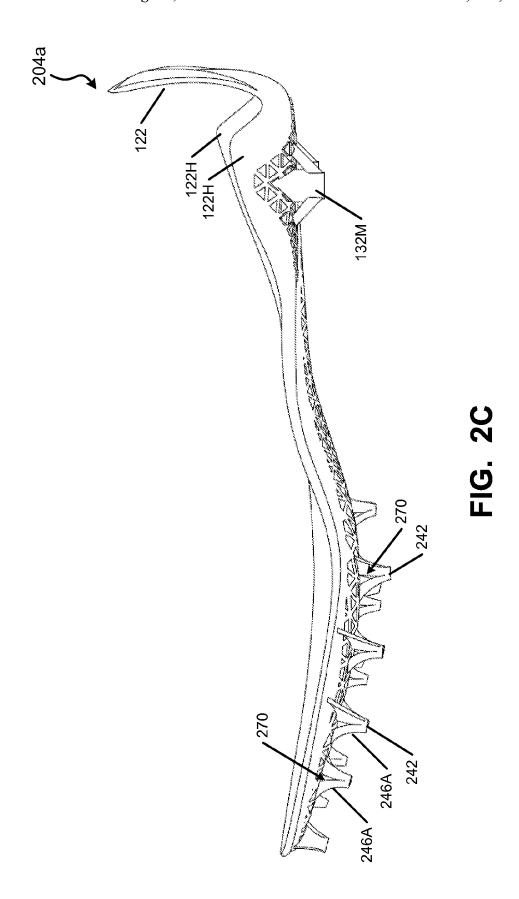



FIG. 2A

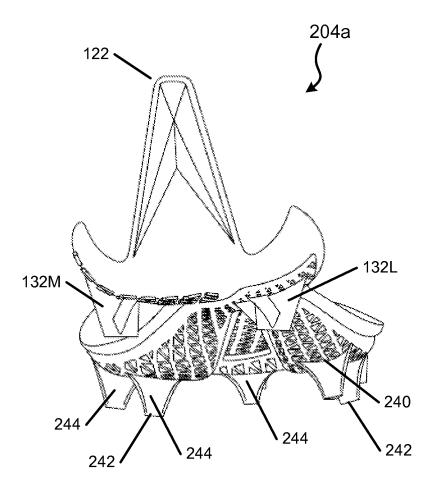
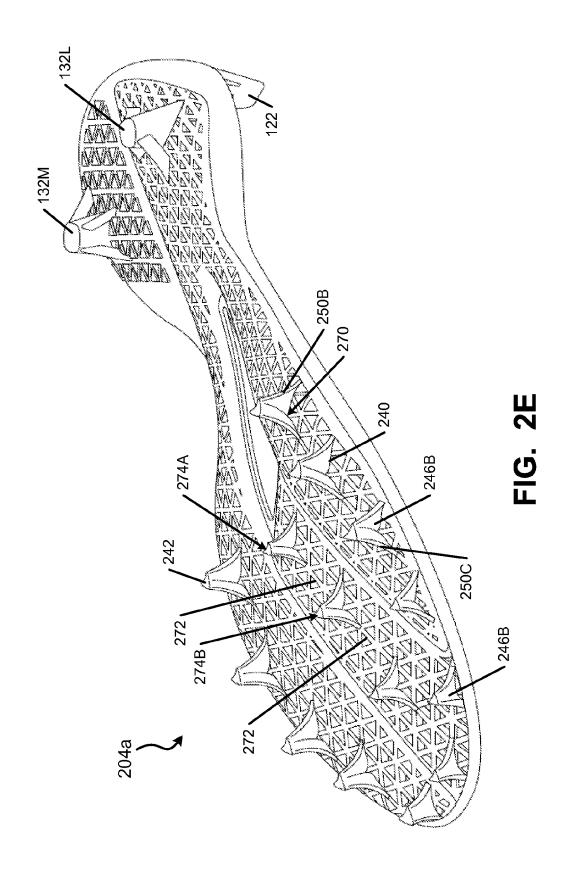
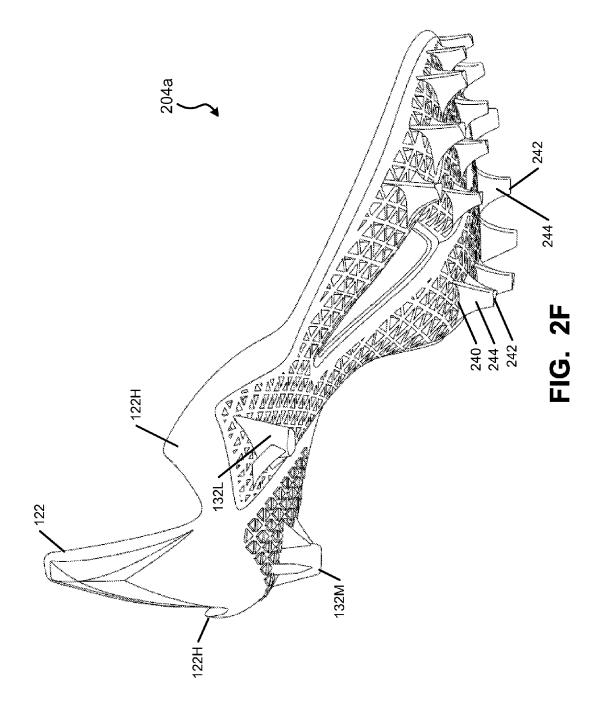




FIG. 2D

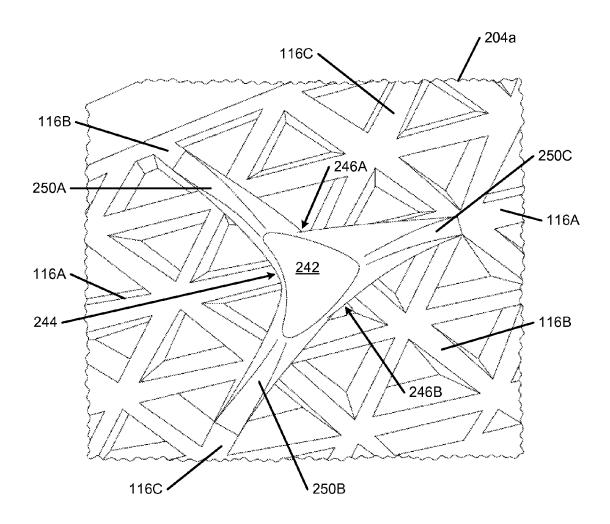


FIG. 2G

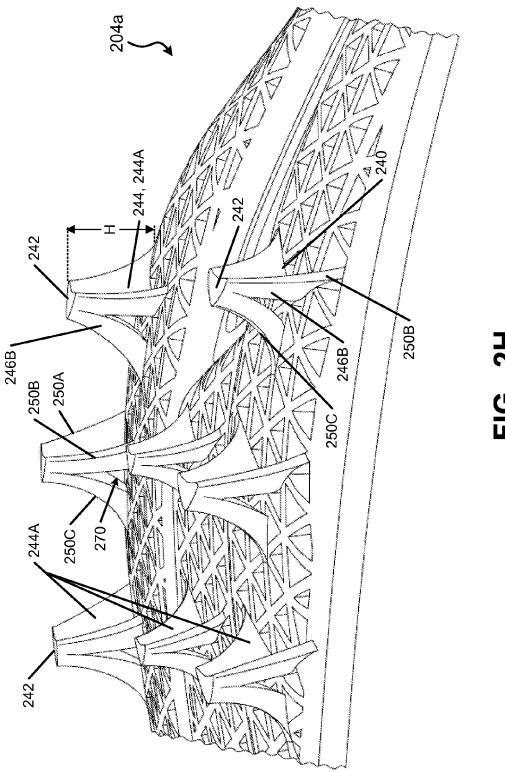
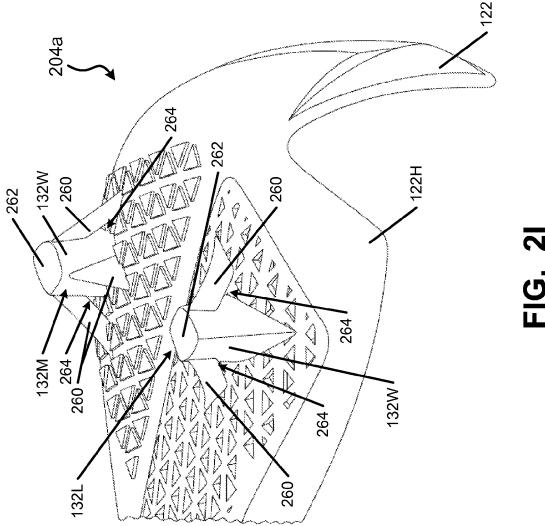



FIG. 2H

20

1

CLEATED FOOTWEAR

RELATED APPLICATION DATA

This application claims priority to U.S. Provisional Patent ⁵ Application No. 61/755,215, titled "Cleated Footwear" and filed Jan. 22, 2013. U.S. Provisional Patent Application No. 61/755,215, in its entirety, is incorporated by reference herein.

FIELD OF THE INVENTION

The present invention relates to the field of footwear. More specifically, some aspects of the present invention pertain to cleat structures, sole structures including such cleat structures, and articles of footwear (e.g., athletic footwear) that include such sole structures. Additional aspects of this invention relate to methods of making footwear sole structures with these cleats.

BACKGROUND

Cleated footwear provides enhanced traction for athletes in various activities, such as baseball, football, soccer, golf, etc. 25 The cleats on such footwear may have different sizes, shapes, orientations, and arrangements on a footwear sole structure, e.g., for use in different activities and/or under different field conditions.

Recent years have witnessed significant changes in artificial turfs and artificial grasses used in athletic fields for various sports. Aspects of the present invention relate to cleated footwear structures, e.g., for football shoes and/or other footwear structures, optionally for use on artificial grass and/or natural grass fields.

SUMMARY

This Summary is provided to introduce some general concepts relating to this invention in a simplified form that are 40 further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the invention.

Some aspects of this invention relate to cleat structures, e.g., cleats for football shoes or other cleated footwear, e.g., 45 for use on natural and/or artificial grass fields. Such cleat structures may include: (a) a cleat base; (b) a cleat free end; (c) a first side edge extending between the cleat base and the cleat free end, wherein the first side edge may have a first concave exterior surface over at least 50% of its height dimen- 50 sion (and in some examples, over at least 75% or even over at least 90% of its height dimension) between the cleat base and the cleat free end; and (d) at least second and third side edges extending between the cleat base and the cleat free end, wherein the second and third side edges may be flat or con- 55 cave over at least 50% of their height dimensions (and in some examples, over at least 75% or even over at least 90% of their height dimensions) between the cleat base and the cleat free end. In some cleat structures, at least the central 50% (and in some examples, at least the central 75% or even at least the 60 central 90%) of the first side edge of the cleat (with respect to a height dimension of the cleat) will have the concave exterior

Additional aspects of this invention relate to footwear sole structures (e.g., outsole components) and/or articles of footwear that include one or more cleat structures, e.g., of the types described above. Such sole structures may include:

2

- (a) one or more perimeter cleats located along a side of a forefoot area or a midfoot area of the outsole component (e.g., along the lateral side, the medial side, or both), wherein at least some of these perimeter cleats optionally include a concave rear edge that faces a rear heel direction of the sole structure, a three sided cleat structure, and/or the cleat structure described above;
- (b) one or more cleats located in an intermediate forefoot area between the perimeter cleats, at a rear heel area, etc.:
- (c) a base plate having a rear heel support portion, an arch support portion, and a forefoot support portion, wherein the base plate includes a V-shaped support structure having a lateral support member and a medial support member extending forward from a base support area located in a heel or rear midfoot area of the outsole component;
- (d) a matrix structure formed in the base plate, the matrix structure optionally including: (i) a first plurality of rib elements extending in a first direction of the outsole component, (ii) a second plurality of rib elements extending in a second direction of the outsole component, (iii) a third plurality of rib elements extending in a third direction of the outsole component, (iv) a plurality of recesses between adjacent rib elements, and/or (v) a plurality of openings between adjacent rib elements;
- (e) a rear heel support extending upward from the base plate at a rear heel area of the outsole component; and/or
- (f) a heel counter structure extending upward from the base plate at a heel area of the outsole component (for optionally supporting the lateral and medial sides of the heel as well as the rear heel).

Still additional aspects of this invention relate to methods of making such cleats and/or outsole structures, optionally as unitary, one-piece constructions, using selective laser sintering or other three-dimensional printing and/or rapid manufacturing additive fabrication techniques. Some example cleats and cleated sole structures and/or footwear structures in accordance with aspects of this invention relate to structures specifically designed to promote increased or enhanced sprint or high speed running performance, particularly for use on artificial and/or natural grass surfaces.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing Summary, as well as the following Detailed Description of the Invention, will be better understood when considered in conjunction with the accompanying drawings in which like reference numerals refer to the same or similar elements in all of the various views in which that reference number appears. The attached figures include:

FIGS. 1A through 1G, which provide various views of an article of footwear (and/or various components or features thereof) in accordance with aspects of this invention, including: a lateral side view (FIG. 1A), a medial side view (FIG. 1B), a top view (FIG. 1C), a bottom view (FIG. 1D), a rear heel view (FIG. 1E), another medial side view (FIG. 1F), and another bottom view (FIG. 1G); and

FIGS. 2A through 2I, which provide various views of a sole member (and/or various components or features thereof) in accordance with aspects of this invention, including: a top view (FIG. 2A), a bottom view (FIG. 2B), a lateral side view (FIG. 2C), a rear heel view (FIG. 2D), bottom perspective views (FIGS. 2E and 2F), a close up view of an individual cleat (FIG. 2G), a close up, perspective view of a portion of

3

the bottom forefoot area (FIG. 2H), and a close up, perspective view of a portion of the bottom heel area (FIG. 2I).

DETAILED DESCRIPTION OF THE INVENTION

In the following description of various examples of structures, components, and methods according to the present invention, reference is made to the accompanying drawings, which form a part hereof, and in which are shown by way of illustration various example structures, environments, and 10 methods according to this invention and/or in which aspects of the invention may be practiced. It is to be understood that other structures, environments, and methods may be utilized and that structural and functional modifications may be made to the specifically described structures and methods without 15 departing from the scope of the present invention.

I. GENERAL DESCRIPTION OF ASPECTS OF THIS INVENTION

As noted above, aspects of this invention relate to cleat structures, sole structures including cleat structures, and articles of footwear (e.g., athletic footwear) that include such sole structures. Additional aspects of this invention relate to methods of making such cleats, sole structures, and/or articles 25 of footwear.

A. Cleat Constructions According to Aspects of this Invention

Some aspects of this invention relate to cleat constructions that can be incorporated into articles of footwear, such as 30 athletic footwear (and in some specific examples, football or soccer shoes). In some more specific examples, the cleats may be fixed or permanently incorporated into the sole structure of the article of footwear, including integrally formed with a plate or outsole component of the sole structure as a unitary, 35 one-piece construction.

As a more specific example, cleats in accordance with at least some examples of this invention may include: (a) a cleat base; (b) a cleat free end; (c) a first side edge extending between the cleat base and the cleat free end, wherein the first 40 side edge may have a first concave exterior surface over at least 50% of its height dimension (and in some examples, over at least 75% or even over at least 90% of its height dimension) between the cleat base and the cleat free end; (d) a second side edge extending between the cleat base and the 45 cleat free end, wherein the second side edge may be flat or concave over at least 50% of its height dimension (and in some examples, over at least 75% or even over at least 90% of its height dimension) between the cleat base and the cleat free end; and (e) a third side edge extending between the cleat base 50 and the cleat free end, wherein the third side edge may be flat or concave over at least 50% of its height dimension (and in some examples, over at least 75% or even over at least 90% of its height dimension) between the cleat base and the cleat free end. If desired, at least the central 50% (and in some 55 examples, at least the central 75% or even at least the central 90%) of the first side edge of the cleat (with respect to a height dimension of that cleat) will have the concave exterior sur-

In some example cleat structures in accordance with this 60 invention, at least 90% (and in some examples, at least 95%) of a perimeter length around the cleat at a first cleat height location between the cleat base and the cleat free end will be made up of the first, second, and third side edges (and the remainder of that perimeter length (if any) may be made up of 65 corner or junction regions between adjacent side edges, e.g., with rounded corners, flattened corner edges, etc.). This first

4

cleat height location (at which the perimeter length may be measured) may be located between 0.1H and 0.9H, wherein H is the overall or maximum cleat height dimension in a direction from the cleat base to the cleat free end.

As yet some additional examples, at least 90% (or even at least 95%) of a perimeter length around the cleat free end and/or around the cleat base may be made up of the first, second, and third side edges. The remainder of this perimeter length (if any) may be made up of corner or junction regions between adjacent side edges, e.g., with rounded corners, flattened corner edges, etc.

Some cleat constructions in accordance with examples of this invention will include one or more openings extending through the cleat, e.g., from the second side edge to the third side edge. The opening(s), when present, may take on any desired size, shape, orientation, and/or relative arrangement, provided that adequate material remains present to maintain the structural integrity and/or to support the intended use of the cleat.

Additional aspects of this invention relate to sole structures (e.g., outsoles, outsole plates, etc.) and/or articles of footwear that include one or more cleats of the various types described above. In such sole structures and/or articles of footwear, at least some of the cleat structures of the types described above will be provided in the forefoot area of the sole structure. Optionally, at least some of the cleat structure(s) will be oriented with respect to the overall sole structure and/or the article of footwear such that at least some of the cleats will have the concave exterior surface of the first side edge facing rearward, e.g., toward a rear heel area of the sole structure/article of footwear.

B. Sole Structures and Articles of Footwear According to Aspects of this Invention

Additional aspects of this invention relate to sole structures for articles of footwear. Sole structures in accordance with some examples of this invention may include an outsole component having: (a) a first lateral perimeter cleat located along a lateral side of a forefoot area or a midfoot area of the outsole component, wherein the first lateral perimeter cleat includes a concave rear edge that faces a rear heel direction of the sole structure, (b) a second lateral perimeter cleat located along the lateral side of the outsole component and forward of the first lateral perimeter cleat, wherein the second lateral perimeter cleat includes a concave rear edge that faces the rear heel direction of the sole structure, (c) a first medial perimeter cleat located along a medial side of a forefoot area or a midfoot area of the outsole component, wherein the first medial perimeter cleat includes a concave rear edge that faces the rear heel direction of the sole structure, and (d) a second medial perimeter cleat located along the medial side of the outsole component and forward of the first medial perimeter cleat, wherein the second medial perimeter cleat includes a concave rear edge that faces the rear heel direction of the sole structure. Additional cleats may be provided, if desired, e.g., along either side perimeters, in an intermediate area between the side perimeter cleats, at a rear heel area, etc. At least some of these cleats, particularly in the midfoot and/or forefoot areas of the sole structure, may have the various cleat features and structures described above (e.g., the concave rear edge).

Sole structures in accordance with other examples of this invention may have an outsole component that includes a base plate having a rear heel support portion, an arch support portion, and a forefoot support portion, wherein the base plate includes a V-shaped support structure having a lateral support member and a medial support member extending forward from a base support area located in a heel or rear midfoot area of the outsole component. At least some portions of this base

plate may have a matrix structure, e.g., at one or more of a lateral side of the lateral support member, a medial side of the medial support member, a rear heel area (e.g., behind and/or as part of the base support area), between the lateral support member and the medial support member (e.g., at least in a 5 forefoot area of the outsole component), etc. The matrix structure may be formed as spaced apart recesses that extend only partially through the outsole component; spaced apart openings that extend completely through the outsole component; small, separated raised areas; etc. The recesses, openings, and/or raised areas may be generally triangular shaped in some example structures according to this invention.

Sole structures in accordance with yet other examples of this invention may include an outsole component having a base plate at least in a forefoot area of the outsole component, 15 wherein the base plate has a matrix structure including: (a) a first plurality of rib elements extending in a first direction (e.g., a front-to-back direction), (b) a second plurality of rib elements extending in a second direction (e.g., a rear medialto-forward lateral direction), and (c) a third plurality of rib 20 elements extending in a third direction (e.g., a forward medial-to-rear lateral direction) of the outsole component. This example outsole component further may include one or more three sided cleats extending from the base plate, wherein at least one of the three sided cleats includes: (a) a 25 cleat base, (b) a cleat free end, (c) a first side edge extending between the cleat base and the cleat free end, (d) a second side edge extending between the cleat base and the cleat free end, and (e) a third side edge extending between the cleat base and the cleat free end, wherein one of the second plurality of rib 30 elements aligns with (and optionally forms a continuous, unitary, one-piece structure with) a junction region between the first side edge and the second side edge, wherein one of the third plurality of rib elements aligns with (and optionally forms a continuous, unitary, one-piece structure with) a junc- 35 tion region between the first side edge and the third side edge, and wherein one of the first plurality of rib elements aligns with (and optionally forms a continuous, unitary, one-piece structure with) a junction region between the second side edge and the third side edge. The cleat(s) additionally may 40 have any of the various structures or features described above. For example, at least some of the cleats may be shaped and/or oriented such that at least one side edge has a rearward heel facing, exterior concave wall, e.g., as described above.

The features of the various sole structures described above 45 may be used in any desired combinations or subcombinations without departing from the invention. Sole structures in accordance with at least some examples of this invention may include other features as well, including one or more additional cleats of the types described above and/or different 50 types of cleats (including removable or fixed cleats of any desired size, shape, or structure). As one additional potential feature that may be included in any of the sole structures described above, the outsole component further may include a rear heel support extending upward from the base plate at a 55 rear heel area of the outsole component. This rear heel support may constitute a fin type structure, e.g., having a generally trapezoidal or triangular shape. As some more specific examples, this rear heel support may include a top edge or point, a first side edge extending downward from the top edge 60 or point to a medial, bottom, rear heel area of the outsole component, and a second side edge extending downward from the top edge or point to a lateral, bottom, rear heel area of the outsole component. These side edges may constitute substantially linear or smoothly curved segments that are at 65 least 1.5 inches long, and in some examples, at least 2 inches long or even at least 2.5 inches long. The rear heel support

6

may be formed as a continuous, single piece structure with respect to the outsole base plate (which also may be a continuous, single piece structure with respect to one or more of the cleats).

Still additional aspects of this invention relate to articles of footwear that include an upper engaged with a sole structure having any of the various features, properties, combinations of features, and/or combinations of properties described above

C. Methods of Making Sole Structures According to Aspects of this Invention

Still additional aspects of this invention relate to methods of forming cleats, sole structures, and/or articles of footwear according to any of the various examples described above. If desired, the cleats and/or outsole components described above may be made by molding processes, such as injection molding or the like. The cleats and outsole components may be made separately and then engaged with one another (e.g., by mechanical connectors, by cements or adhesives, etc.) or they may be integrally formed as a unitary, one piece construction (e.g., by a molding step).

As additional examples, if desired, the cleats and/or at least some portions of the sole structures (e.g., outsole components, optionally including a rear heel support or other heel counter type structure) may be fixed or permanently formed together as a unitary, one-piece construction, e.g., by selective laser sintering, stereolithography, or other three-dimensional printing or rapid manufacturing additive fabrication techniques. These types of additive fabrication techniques allow the cleats, outsole base plates, matrix structures, support members, heel counters, and/or rear heel supports to be built as unitary structures. Sole structures of the types described above (including those made by the methods described above) may be incorporated into an article of footwear, e.g., engaged with one or more upper components), in any desired manner, including in manners that are conventionally known and used in the footwear art (e.g., by fixing the upper to the sole structure using cements or adhesives, mechanical connectors, and/or the like).

Given the general description of features, aspects, structures, processes, and arrangements according to certain embodiments of the invention provided above, a more detailed description of specific example structures and methods in accordance with this invention follows.

II. DETAILED DESCRIPTION OF EXAMPLE STRUCTURES AND METHODS ACCORDING TO THIS INVENTION

Referring to the figures and following discussion, various articles of footwear, footwear components, and/or features thereof in accordance with the present invention are described. The footwear depicted and discussed are football shoes, but the concepts disclosed with respect to various aspects of this invention may be applied to a wide range of cleated or other athletic footwear styles, including, but not limited to: soccer shoes, baseball shoes, softball shoes, etc.

FIGS. 1A through 1G illustrate various views of an article of footwear 100 (also called a "shoe" herein) in accordance with some aspects of this invention that is well suited to support and enhance sprinting/running speed on artificial grass/natural grass surfaces. The shoe 100 has a very lightweight design, including an upper 102 directly engaged with an outsole component 104a of a sole structure 104, e.g., by cements or adhesives, by mechanical connectors, or the like. While no separate midsole component is shown in this specific example shoe structure 100, a midsole component (e.g.,

polymeric foam, one or more foam columns, one or more fluid-filled bladders, one or more mechanical shock absorbing elements, etc.) may be provided, if desired, in some footwear structures 100 in accordance with this invention (e.g., inside and/or outside of the foot-receiving chamber of the 5 shoe 100).

The upper 102 may have any desired construction and/or may be made from any desired material(s) without departing from this invention. In this illustrated example shoe 100, the upper 102 is designed to be extremely lightweight and aerodynamic, to promote speed. For some athletes, the foot may move as fast as about 50 mph when sprinting, and thus structures as part of a shoe 100 can produce significant drag at those speeds. Therefore, in some specific examples of shoe structures 100 in accordance with this invention, the upper 15 102 may be made from a knit fabric material that is covered or coated (or "skinned") with a thin microlayer of material, such as a thermoplastic polyurethane skin material or other skin materials. Examples of knitted footwear uppers are described, for example, in U.S. Pat. No. 7,347,011 (which is 20 entirely incorporated herein by reference), and examples of "skin" materials are described, for example, in U.S. Patent Appln. Publ. No. 2011/0088285 (which publication is entirely incorporated by reference). In some shoe structures 100, the outer surface of the upper 102 (e.g., the exposed skin 25 material) may be smooth and seamless to further reduce or minimize drag. As another option, if desired, the exterior surface of the upper 102 (e.g., the exterior "skin") may be dimpled to further promote the aerodynamic properties of the

This example upper 102 further includes a conventional shoe lace 106 engaged with a series of lace engaging structures provided along opposite sides of the instep area of the upper 102. Any type of lace engaging structures may be used without departing from this invention, including, for 35 example, grommets or simple openings through the upper material at the instep area, as are conventionally known and used in this art. In this specifically illustrated footwear structure 100, however, the lace 106 engages loop elements 108 (e.g., formed of fabric) that extend inside the upper 102 or 40 between layers of the upper 102 (e.g., as shown by loop elements 108 extending into openings 110 formed along the upper 102 to allow access between upper layers). The exposed edges of openings 110 may be reinforced to prevent tearing or fraying. In some examples of this aspect of the 45 invention, the lace loop elements 108 may extend to and/or engage strap components that at least partially wrap around the foot and help conform the upper 102 to the shape of the wearer's foot. For example, the lace loop elements 108 (or one or more straps or other structure engaged with them) may 50 extend to an area between the upper 102 and the sole structure 104 (and optionally all the way around the plantar surface of the foot) so that when the lace 106 is tightened, this wraps and tightens the loop elements 108 (and any attached structures) around the sides and/or bottom of the wearer's foot. 55 Examples of such adjustable and/or dynamic fit and foot securing structures are shown, for example, in U.S. Patent Appln. Publ. Nos. 2012/0011744 and 2012/0198720, which publications are entirely incorporated herein by reference.

The sole structure **104** of FIGS. 1A through 1G now will be 60 described in more detail. As shown, this example sole structure **104** constitutes an outsole component (or plate) **104** at that spans the entire length of the shoe **100** and includes a heel support area **104**H, a forefoot support area **104**F, and a midfoot or arch support area **104**M located between the heel and 65 forefoot support areas. The outsole component **104** a of this example shoe structure **100** constitutes a single, unitary, one-

8

piece construction, although other, multi-part outsole constructions may be possible without departing from some aspects of this invention. As another option, if desired, the outsole component 104a may support less than the entire plantar surface of a wearer's foot (e.g., it may be located only or primarily in the forefoot area, etc.).

As noted above, this example outsole component 104a includes a base plate that spans the longitudinal length of the shoe 100 and includes the support areas 104H, 104M, and 104F. The top surface of the base plate forms a relatively smooth, contoured surface for supporting the plantar surface of a wearer's foot (optionally through a strobel element 102S, insole, midsole, sockliner, bootie, or other element provided to directly contact the wearer's foot). This example base plate generally provides a V-shaped support structure having a lateral support member 112L and a medial support member 112M extending forward from a base support area 112B located in a heel or rear midfoot area of the outsole component 104a. The lateral support member 112L and the medial support member 112M constitute solid (and potentially somewhat thickened) ribs or areas of outsole material (e.g., a nylon or other material, such as nylon 11) that meet at (or immediately forward of) the base support area 112B. As shown in FIG. 1D, the base plate has a matrix structure at a lateral side of the lateral support member 112L, at a medial side of the medial support member 112M, and rearward of the junction between members $112\mbox{L}$ and $112\mbox{M}$ (at least at the lateral side of heel support member 118). This matrix structure will be described in more detail below.

As further shown in FIG. 1D, the base plate of the outsole component 104a in this example has an optional opening 114 defined through it in front of the base support area 112B and between the lateral support member 112L and the medial support member 112M. This opening 114 may have any desired size and/or shape without departing from this invention, including extension to the toe area of the sole structure 104 (e.g., to completely open the space between lateral support member 112L and medial support member 112M in front of their junction at the base support area 112B). In other examples, the opening 114 (when present) is provided at least in a midfoot/arch region of the outsole component 104a. In this specifically illustrated structure, the opening 114 is substantially triangular shaped and extends continuously in a front-to-rear direction of the outsole component 104a for at least 2 inches (and in some examples, at least 2.5 inches or even at least 3 inches) and runs from the base support area 112B at least to the forefoot area of the outsole component 104a. The opening 114 can help control the flexibility and/or stiffness of the outsole component 104a particularly in the forefoot and/or midfoot areas, e.g., to somewhat decouple the lateral and medial sides of the outsole component, to provide relative flexibility between the lateral and medial sides, and/ or to provide a more natural motion feel (e.g., to promote better pronation as the wearer lands a step and the weight/ force on the foot rolls from the lateral side to the medial side of the foot).

In the outsole component 104a of FIG. 1D, the opening 114 terminates in the midfoot/forefoot area such that an intermediate forefoot support plate portion 1121 is provided as part of the base plate of the outsole component 104a between the lateral support member 112L and the medial support member 112M forward of the opening 114. This intermediate forefoot support plate portion 112I, while not necessary in all footwear structures in accordance with this invention, helps provides a more comfortable and stable feel when a wearer sprints in the shoe 100, as the complete forefoot of the wearer is supported.

As mentioned above, the bottom surface of this example outsole component 104a has a matrix structure. The matrix structure can take on any desired form without departing from this invention. In this illustrated example outsole component 104a, the matrix cells 116 are formed as openings and/or 5 recesses in the areas between three adjacent sets of rib elements, namely, rib elements 116A that extend in a front-torear direction of the outsole component 104a, rib elements 116B that extend in a rear medial-to-front lateral direction of the outsole component 104a, and rib elements 116C that extend in a forward medial-to-rear lateral direction of the outsole component 104a. The matrix cells 116 may extend partially or completely through a thickness of the outsole component 104a. While other arrangements are possible, in this specifically illustrated example, the matrix cells 116 at 15 the lateral side of the lateral support member 112L constitute recesses that extend partially through a thickness of the outsole component 104a, the matrix cells 116 at the medial side of the medial support member 112M constitute recesses that extend partially through the thickness of the outsole compo- 20 nent 104a, and the matrix cells 116 in the intermediate forefoot support plate portion 112I constitute openings that extend completely through the outsole component 104a. The matrix cells 116 in the base support area 112B and to a lateral side of heel support member 118 constitute recesses that 25 extend partially through the outsole component 104a. This matrix structure (with recesses and/or openings) helps reduce the overall weight of the outsole component 104a and provide the ability to affect and/or control the flexibility and/or strength of the outsole component 104a (including front-to- 30 back or side-to-side flexibility). The local sizes (e.g., width, height, etc.), relative orientations, and spacings of rib elements (e.g., 116A, 116B, 116C) also may allow one to affect and/or control outsole flexibility and/or strength.

Because of the specific number, shapes, and relative orientations of the rib elements 116A, 116B, and 116C in this example outsole component 104a, the matrix cells 116 are generally triangular shaped. Other matrix cell shapes are possible, however, without departing from this invention, such as round, oval, elliptical, square, rectangular, hexagonal, irregular shapes, etc. Other matrix cell sizes also may be used without departing from the invention (and may allow control over the strength, flexibility, and/or stiffness of the outsole component 104a). A single outsole component 104a may include matrix cells 116 of different shapes and/or sizes, if 45 desired.

The outsole component 104a of FIG. 1D has the matrix structure with recessed or open matrix cells 116 extending over the lateral heel side, the sides of the midfoot (around opening 114), and substantially the entire forefoot area of the 50 bottom surface of the outsole component 104a. The heel area of the outsole component 104a is separated by a support member 118 (e.g., a solid rib or length of material) that extends across the heel in a rear lateral-to-forward medial direction. While the matrix cells 116 on the lateral side of the 55 support member 118 constitute recesses or openings, the matrix cells 120 on the medial side of support member 118 constitute projections (e.g., triangular shaped) from the base surface level of outsole component 104a. Projection matrix cells of this type could be used at other areas of the outsole 60 component 104a, if desired.

FIGS. 1A, 1B, and 1E further illustrate that the outsole component 104a of this example sole structure 104 includes a heel support extending upward from the base plate of the outsole component 104a at a heel area of the outsole component 104a. Any desired type, style, or shape of heel support may be used in some sole structures in accordance with this

10

invention, including heel supports akin in size and shape to conventional heel counters (e.g., that support the sides and rear of the heel).

Because this example shoe 100 is specifically targeted for maximizing sprinting speed, however, the heel support of this example constitutes an extreme rear heel support 122, e.g., in the form of a rear heel fin having a generally trapezoidal or triangular shape. More specifically, as best shown in FIG. 1E, the rear heel support 122 includes a top edge or point 122E, a medial side edge 122M extending downward from the top edge or point 122E to a medial, bottom, rear heel area 122A of the outsole component 104a, and a lateral side edge 122L extending downward from the top edge or point 122E to a lateral, bottom, rear heel area 122B of the outsole component 104a. In at least some example structures in accordance with the invention, one or both of the medial side edge 122M and the lateral side edge 122L will include a downwardly extending curved or linear segment at least 1.5 inches long, and in some examples, at least 1.75 inches long, at least 2 inches long, or even longer. The rear heel support 122 provides a base against which the wearer's rear heel pushes when a wearer is sprinting in a forward direction while still providing a very lightweight overall sole plate, e.g., by eliminating much of the lateral side heel and medial side heel support material provided in more conventional heel counter structures. The rear heel support 122 may include ridges, corners, or bends, e.g., to affect and allow control of overall stiffness of the heel support 122.

Because less side heel support is needed in a shoe primarily used for forward sprinting, in this illustrated example sole structure 104 relatively low side heel supports 122H are provided at the medial and lateral sides of the heel that cup and position the lower portions of the wearer's heel. In some examples, with the sole structure 104 sitting on a contact surface (see FIG. 1F), these side heel supports 122H will extend to a maximum height $\rm H_1$ from the ground or contact surface to a level that is less than 50% of the total height $\rm H_2$ of the heel fin 122 from the ground or contact surface (and in some examples, less than 35% or even less than 25% of the total height). Of course, taller and/or additional side heel supports could be provided, if desired, inside or outside of the upper 102 (or between layers of the upper 102), e.g., depending on the intended use of the shoe 100.

FIGS. 1A, 1B, and 1D further illustrate the cleat arrangement for this example shoe 100. As best shown in FIG. 1D, the lateral perimeter side or edge area (e.g., the area to the lateral side of lateral support member 112L) includes four midfoot/ forefoot cleat components 130L1 through 130L4 arranged along the perimeter side or edge of the outsole component 104a, wherein cleat 130L4 is located forward of cleat 130L3, which is forward of cleat 130L2, which is forward of 130L1. Cleat "location," as used herein, may be considered as the geometric center of the free end of the cleat. The medial perimeter side or edge area (e.g., the area to the medial side of medial support member 112M) includes five midfoot/forefoot cleat components 130M1 through 130M5 arranged along the perimeter side or edge of the outsole component 104a, wherein cleat 130M5 is located forward of cleat 130M4, which is forward of cleat 130M3, which is forward of cleat 130M2, which is forward of cleat 130M1. The intermediate forefoot support plate portion 112I of this example outsole component 104a also includes five cleats, namely, cleats 130I1 through 130I4, which are substantially aligned in the front-to-rear or longitudinal direction of the outsole component 104a, and cleat 130I5, which is located at the front toe perimeter area to the lateral side of and between cleats 130I3 and 13014. If desired, at least some of the intermediate cleats

130I1-130I5, when present, may be made somewhat smaller than at least some of the lateral side or medial side cleats. The heel area of outsole component 104a includes a single lateral side cleat 132L and a single medial side cleat 132M, although additional heel cleats (such as a rear central heel cleat) may be 5 provided, if desired. Other cleat arrangements, numbers, and/or orientations are possible in some example structures in accordance with this invention.

The cleat arrangement of FIG. 1D (and as also shown in FIG. 1G), however, is particularly well suited for sprinting. When sprinting (e.g., for 40 yards or even more), an athlete may spend all or almost all of the foot ground contact time on his/her toes. Also, when sprinting, the athlete typically contacts the ground first on the lateral midfoot or forefoot area and then the foot rolls forward and inward such that the 15 weight/force shifts across the center of the forefoot to the medial side of the forefoot and forward for toe off (e.g., at the big toe and potentially the adjacent toe). The cleats of this example outsole component 104a are oriented to support this type of motion and weight shift (e.g., with transverse cleat 20 sets 130A1-130A4 oriented in a rear lateral-to-forward medial direction, as generally shown in FIG. 1G). For example, as shown in FIG. 1G, cleat set 130A1 includes cleats 130L1 and 130M1 oriented such that the rearmost medial cleat 130M1 is forward of the rearmost lateral cleat 130L1 (an 25 intermediate cleat could be provided with this cleat set 130A1, if desired). The next transverse cleat set 130A2 is oriented such that cleats 130L2, 130I1, and 130M2 are oriented in a rear lateral-to-forward medial direction (and optionally substantially aligned) with cleat 130L2 rearward 30 of at least cleat 130M2. The next transverse cleat set 130A3 is oriented such that cleats 130L3, 130I2, and 130M3 are oriented in a rear lateral-to-forward medial direction (and optionally substantially aligned) with cleat 130L3 rearward of at least cleat 130M3. The next transverse cleat set 130A4 is 35 oriented such that cleats 130L4, 130I3, and 130M4 are oriented in a rear lateral-to-forward medial direction (and optionally substantially aligned) with cleat 130L4 rearward of at least cleat 130M4. The remaining forefoot cleats in this specific example sole structure 104 (cleat set 130A5 includ- 40 ing cleats 130M5, 130I4, and 130I5) are positioned toward the very front edge of the shoe 100 for the toe off phase of the sprint step cycle. As noted above, a cleat's location, as used in this context, may be considered as the geometric center of the exposed, free end of the cleat. The "front-to-rear direction" of 45 the sole structure 104 may be determined as the direction connecting the rearmost point P_R and forwardmost point P_F of the sole structure 104.

Additional potential features of sole structures and/or cleat structures in accordance with at least some aspects of this 50 invention will be described below in conjunction with FIGS.

2A through 2I. FIGS. 2A-2I illustrate various views of a sole structure 204 that is similar to the sole structure 104 shown in FIGS. 1A through 1G, but without an upper attached. Accordingly, the reference numbers used in FIGS. 1A through 1G 55 also will be used in FIGS. 2A through 2I to refer to the same or similar parts, and at least some of the description thereof will be omitted. The features of the sole structure and/or cleats of FIGS. 2A-2I also could be used in the sole structures and/or cleats of FIGS. 1A-1G, if desired.

FIGS. 2A and 2B show top and bottom views, respectively, of an outsole component 204a that is similar to the outsole component 104a shown and discussed above in conjunction with FIGS. 1A through 1G. As apparent from the top view of FIG. 2A, this example outsole plate 204a has a continuous top 65 surface 202 for supporting a plantar surface of a wearer's foot. The top view also helps illustrate the areas of the matrix

12

structure formed as recesses in the bottom surface of the outsole component 204a (e.g., at the lateral perimeter sides and edges and the medial perimeter sides and edges) and those formed as openings 116 (e.g., at the intermediate forefoot support area 112I). The entire perimeter area 202P of the outsole component 204a top surface 202 has a solid or filled in structure and serves as a bonding perimeter, e.g., 8-15 mm (or even 10-12 mm) of solid material around the entire top perimeter of outsole component 204a for attaching the outsole component 204a with another footwear component, such as an upper 102 and/or a strobel 102S or another sole component (such as a midsole component). FIG. 2A further shows that the heel based cleats 132L and 132M are formed as hollow members (i.e., the top surface 202 of the outsole member 204a includes interior cavities 232L and 232M that extend into the interior of the cleats 132L and 132M, respectively). Hollowing out the heel cleats 132L and 132M in this example outsole component 204a structure helps reduce overall weight and helps provide a lightweight outsole component 204a.

FIGS. 2C through 2I provide additional views that help illustrate various features of the outsole component 204a and particularly the cleat structures in accordance with at least some examples of this invention. For example, as shown in these figures, at least some of the cleats (e.g., one or more (or even all) of the forefoot cleats) will have a generally three sided cleat construction including: (a) a cleat base 240 (e.g., located by the base surface of the outsole component 204a); (b) a cleat free end 242 (e.g., the surface that first engages the ground); (c) a first side edge 244 extending between the cleat base 240 and the cleat free end 242, wherein the first side edge 244 has a first concave exterior surface 244A over at least 50% of its height dimension H (see FIG. 2H) between the cleat base 240 and the cleat free end 242 (and in some examples, the concave exterior surface 244A will extend at least 75% or even at least 90% of the height dimension H); (d) a second side edge 246A extending between the cleat base 240 and the cleat free end 242; and (e) a third side edge 246B extending between the cleat base 240 and the cleat free end 242. A first junction region 250A joins the first side edge 244 and the second side edge 246A; a second junction region 250B joins the first side edge 244 and the third side edge **246**B; and a third junction region **250**C joins the second side edge 246A and the third side edge 246B.

The junction regions 250A, 250B, and/or 250C may be sharp corners, rounded corners, short flat (or concave) walls, or the like. In some examples, the junction regions 250A, 250B, and/or 250C will be wider at the cleat base area 240 and narrow or taper (optionally to a sharp corner) moving toward the cleat free end 242. At least some of the individual cleats may be constructed such that at least 90% (and in some examples, at least 95%) of a perimeter length around the cleat at a first cleat height location between the cleat base 240 and the cleat free end 242 is made up of the length of the first side edge 244 plus the length of the second side edge 246A plus the length of the third side edge 246B. The remainder of the perimeter length around the cleat at this first cleat height location may constitute length associated with the junction regions 250A, 250B, and 250C such that the cleat essentially has a three sided structure. The "first cleat height location" at which the cleat perimeter length is measured can be located somewhere along the height dimension H of the cleat somewhat above the cleat base 240 and somewhat below the cleat free end 242. As some more specific examples, the "first cleat height location" may be located between 0.1H and 0.9H, wherein H is the cleat height in a direction from the cleat base 240 to the cleat free end 242. As additional potential features,

if desired, at least 90% (or even at least 95%) of a perimeter length around the cleat free end 242 and/or around the cleat base 240 may be made up of the length of the first side edge 244 plus the length of the second side edge 246A plus the length of the third side edge 246B at that location (e.g., with 5 the remainder of the perimeter length around the cleat at these ends constituting length associated with the junction regions 250A, 250B, and 250C).

If desired, at least some portions of either or both of the second side edge **246**A and the third side edge **246**B may have 10 a flat or even concave exterior surface over at least 50% of its height dimension (and in some examples, the flat or concave exterior surface of these edges **246**A and/or **246**B will extend at least 75% or even at least 90% of that edge's height dimension). The concave edges may make the cleats somewhat 15 sharper and/or enable them to more readily penetrate the ground. The relatively small sized free end **242** (and relatively sharp corners at the junction regions **250**A-**250**C, when present) can help provide good surface penetration, e.g., on natural or artificial grass surfaces.

The concave exterior surface 244A of cleat edge 244 described above may provide additional functions, as well. As shown in FIGS. 2B, 2D, 2E, and 2F (as well as FIGS. 1D and 1G), the cleats in this outsole component 204a (as well as outsole component 104a discussed above) are oriented so that 25 the concave exterior surface 244a of the cleat edge 244 faces a rear heel area and direction of the outsole component 204a and/or a rear heel area and direction of the shoe 100. While it is not required, in these illustrated example outsole components 104a and 204a, all of the forefoot and/or midfoot cleats 30 of the example outsole components 104a and 204a have this cleat orientation (with the concave exterior surface 244a of the cleat edge 244 facing a rear heel area and direction of the outsole component 204a and/or a rear heel area and direction of the shoe 100). In this manner, the concave exterior surface 35 244A of cleat edge 244 provides a relatively large, strong base surface (i.e., surface 244A) oriented perpendicular to a force direction applied to the cleat when a wearer is sprinting in a forward direction.

By orienting all or substantially all of the forefoot cleats in 40 this same general manner (e.g., the lateral perimeter or side cleats, the intermediate cleats, and/or the medial perimeter or side cleats), solid traction and a strong base is provided throughout the forefoot contact phase of a sprinting step cycle (e.g., as the forefoot contacts the grounds (e.g., at the lateral 45 midfoot or forefoot area) and the force of the step rolls forward and from the lateral side to the medial side of the shoe. as described above). The sets 130A1-130A4 of forefoot cleats (optionally substantially aligned in the rear lateral-to-forward medial direction as described above in conjunction with FIG. 50 1G) having this concave cleat side edge 244A orientation also help provide the solid traction and strong base for sprinting as this lateral to medial weight/force transfer occurs across the foot. The concave rear exterior surface 244A of the cleats may be thought of as providing a "scoop" or "shovel" type rear 55 structure to help provide a solid, non-slipping base for push off. The cleats are arranged to provide great traction during the drive phase of a sprint and throughout the sprint.

While they may have the same constructions, shape, and/or orientation, in these illustrated example outsole structures 60 104a/204a, the heel cleats 132L and 132M have a different structure and construction from the forefoot cleats. FIG. 2I (as well as other figures, such as FIG. 2D) shows that the heel cleats 132L and 132M have a generally round cross sectional shape, optionally with one or more support structures 260 arranged around the cleat side edges. The support structures 260 may extend from at or near the cleat free end 262 to the

14

base plate area of the outsole component 204a. In the illustrated examples, at least some of the cleat support structures 260 (e.g., the front-to-back cleat support structures 260) are formed so as to define an opening 264 between the support structure 260 and the main outer wall 132W of the cleats 132L and 132M. While no opening 264 of this type is required, the elimination of this additional material helps reduce the weight of the overall sole structure (at least as compared to the weight of the sole structure if these areas were filled with material). Of course, other types and styles of heel cleats (or no heel cleats) may be provided in the heel area, if desired, without departing from this invention, including cleat constructions without support structures 260 of the types shown herein.

One difference between the outsole component 104a of FIGS. 1A through 1G and the outsole component 204a of FIGS. 2A through 2I relates to at least some of the forefoot and/or midfoot cleat structures. All of the forefoot/midfoot cleats in the outsole component 104a are solid or have an uninterrupted outer surface (i.e., no holes), whereas at least some of the forefoot/midfoot cleats in outsole component 204a (and optionally all of these cleats) have an opening 270 defined through them. In the illustrated example, the openings 270 extend through the cleats from the second side edge 246A through to the third side edge 246B. Note, for example, FIGS. 2C, 2E, and 2H. These openings 270 allow further reduction in the weight of the outsole component 204a. The openings 270, when present, may be present in all cleats or in just some cleats (e.g., in the larger cleats toward the rear of the forefoot area and/or in the midfoot area). The openings 270 may have any desired sizes and/or shapes without departing from this invention, including sizes and shapes different from those shown in these drawings. For example, if desired, the openings 270 may be rounded or elliptical shaped, or two or more openings 270 may be provided through a single cleat without departing from the invention. As another alternative, if desired, one or more openings may be provided between the rear facing concave wall 244 and one or both of the other side walls 246A and/or 246B.

Sole structures, including outsole components 104a and/or **204***a* may be made of any desired materials and/or in any desired manner without departing from this invention, including from conventional materials and/or in conventional manners as are known and used in the art. For example, if desired, the outsole components 104a and/or 204a may be molded (e.g., injection molding) from thermoplastic polyurethanes, nylons, rubbers, and/or other materials (including conventional outsole materials). As a more specific example, the cleat base area (including any desired heel support, such as a heel counter or the rear heel fin 122 and/or the matrix structure shown in the figures) may be injection molded, and cleats of the types described above (or other desired types) may be removably or permanently engaged with the cleat base area, e.g., in a conventional manner (e.g., by cements or adhesives, by mechanical connectors, etc.). As another option, if desired, the cleats may be molded as a unitary, one-piece construction with the cleat base area (e.g., by injection molding). If the manufacturer desires to have some cleats with openings defined through them (e.g., openings 264 and/or 270), the openings can be provided (e.g., drilled, cut, lasered, etc.) in the cleat structures after the molding step is completed. Optionally, if desired, the matrix structure (or some portions thereof, such as the recesses and/or openings 116) also may be formed in a post-molding step.

As another alternative, however, the outsole components 104a and/or 204a may be created (e.g., in the form illustrated) by a rapid manufacturing additive fabrication process, e.g.,

using selective laser sintering (SLS), stereolithography, and/ or 3D printing techniques. Such fabrication techniques allow the outsole components 104a and/or 204a to be "built-up" in a layer-by-layer manner from a computer file that includes three dimensional data regarding the desired three-dimen- 5 sional structure of the outsole components 104a and/or 204a. Such fabrication techniques allow production of cleat structures with undercuts (such as openings 264 and/or 270), cantilevers, overhanging areas, and the like (e.g., structures difficult to mold because of the undercuts). As some more 10 specific examples, if desired, the cleats may be formed so that the free end 242 has a somewhat larger area than the areas of at least some cross sections located above the free end 242 (e.g., so that the top of at least one edge 244, 246A, and/or 246B and/or at least one junction area 250A, 250B, and/or 15 250C curves outward as it gets closer to the free end 242). Additive fabrication techniques of this type also allow the entire outsole components 104a and/or 204a to be produced as unitary, single piece structures, if desired, including the base plate with the cleats, although at least some separately 20 attached cleat elements may be provided on outsole components produced by rapid manufacturing additive fabrication techniques, if desired. Outsole structures 104a, 204a of the types described herein may be formed using nylon SLS materials (e.g., nylon 11) commercially available from 3D Sys- 25 tems, Inc., e.g., under the "DURAFORM®" brand name.

While it also may be possible with molding techniques, the use of rapid manufacturing additive fabrication techniques also allows a manufacturer to create some interesting structural features for an outsole component 104a, 204a, if 30 desired. For example, as illustrated in FIGS. 1D, 2B, 2E, 2F, 2G, and 2H, the various cleats (particularly the forefoot/ midfoot cleats) may be integrally formed as part of the outsole component's matrix structure. As described above, the outsole components 104a and 204a may be formed with a base 35 plate (or base level) in their forefoot areas and this base plate may have a matrix structure including: (a) a first plurality of rib elements 116A extending in a front-to-rear direction of the outsole component 104a, 204a, (b) a second plurality of rib elements 116B extending in a rear medial-to-forward lateral 40 direction of the outsole component 104a, 204a, and (c) a third plurality of rib elements 116C extending in a forward medialto-rear lateral direction of the outsole component 104a, 204a. The forefoot and/or midfoot areas further may include one or more three sided cleats (e.g., 130L1-L4, 130I1-I5, and 45 130M1-M5) extending from the base plate. At least one (and preferable more or even all) of these three sided cleats includes a cleat base 240, a cleat free end 242, a first side edge 244 extending between the cleat base 240 and the cleat free end 242, a second side edge 246A extending between the 50 cleat base 240 and the cleat free end 242, and a third side edge **246**B extending between the cleat base **240** and the cleat free end 242. At least some of these cleats may be oriented with respect to the matrix structure of the outsole component 104a, 204a so that, for individual cleats: (a) one of the second 55 plurality of rib elements 116B aligns with a junction region 250A (e.g., a corner) between the first side edge 244 and the second side edge 246A, (b) one of the third plurality of rib elements 116C aligns with a junction region 250B between the first side edge 244 and the third side edge 246B, and (c) 60 one of the first plurality of rib elements 116A aligns with a junction region 250C between the second side edge 246A and the third side edge 246B. See, for example, FIG. 2G. In addition to simply being aligned, if desired, the various rib elements 116A, 116B, and 116C may be integrally formed 65 during the fabrication process to extend to and morph to form the respective junction areas 250C, 250A, and 250B (to pro16

vide a unitary, one-piece construction between the matrix structure and the cleats). This integral formation provides a lightweight, yet strong, stable, solid feeling cleat construction on the outsole component 104a, 204a.

In fact, if desired, an individual rib element 116A, 116B, and/or 116C of the matrix base structure may morph into and form a portion of more than one individual cleat element. For example, as shown in FIG. 2E, the matrix rib element labeled 272 aligns with and morphs into the forward junctions or edges of the two intermediate cleats labeled 274A and 274B.

Outsole components 104a, 204a (e.g., outsole plates) of the types described above (e.g., made from nylon 11 by an SLS process) can provide a sufficiently stiff and supportive forefoot area that can still flex and provide "spring-back" effect as the plate returns to its original shape during the non-contact time of a sprint step cycle (e.g., toe spring after toe off).

Also, outsole components 104a and 204a of the types described above made by an SLS or other rapid manufacturing additive fabrication technique may be further treated after the fabrication process. For example, at least some portions of the fabricated part may be wrapped, coated, impregnated, or exposed to an infiltrate or other material to alter a property of the part. This may be used, for example, to change the color of the part (or portions thereof), to add logos or graphics, to control hardness or flexibility, to control its water resistance or other absorbency properties, etc.

Articles of footwear and/or sole structures according to examples of this invention may have a wide variety of sizes, dimensions, shapes, etc. The following features may be provided in shoe/sole structures designed to improve and/or maximize sprinting speed on artificial or natural grass surfaces. For example, the matrix ribs 116A-116C may have a width dimension of less than 5 mm. At least some of the lateral and medial edge or perimeter cleats may have height dimension H up to about 20 mm (e.g., from 5 to 20 mm), with the cleats generally being a bit larger as one moves toward the rear of the shoe. The footbed thickness (e.g., the thickness within a recess of the matrix structure, not through a rib element) may be less than 2 mm, and in some examples, less than 1.5 mm or less than 1 mm. When placed on a horizontal surface S (e.g., as shown in FIG. 1F), the free end of the toe portion of the outsole component 104a (dimension H_T) may be at least 40 mm, and in some examples, at least 50 mm above the surface S. The raised toe of the shoe (in this orientation) helps promote a forward lean as the toes contact the ground during a sprinting effort. The heel fin 122 may have: (a) a height of at least about 60 mm (from the top to the bottom of edges 122M and 122L), and in some examples, at least about 70 mm; (b) a bottom width W_E of about 30-40 mm; and (c) a top width (of top edge 122E) of 0 to 18 mm (and in some examples, 0-12 mm). The entire outsole component 104a (and optionally the entire shoe 100) may weigh less than 9 oz., and in some examples, less than 7 oz, or even less than 6 oz.

Also, while generally triangular shaped cleats are described in detail above, other cleat constructions are possible, including, for example, cleats having generally square, rectangular, parallelogram, and/or trapezoidal cross sectional shapes. Such cleats still may have one edge with a concave top-to-bottom exterior surface oriented to face the rear heel direction. Not all cleats on a single shoe and/or in a single forefoot area of a shoe need have the same overall sizes, shapes, and/or constructions.

III. CONCLUSION

The present invention is disclosed above and in the accompanying drawings with reference to a variety of embodiments

and structural options. The purpose served by the disclosure, however, is to provide examples of the various features and concepts related to the invention, not to limit the scope of the invention. Those skilled in the art will understand that the structures, options, and/or alternatives for the cleat structures, sole structures, footwear structures, and/or methods described herein, including the features of the various different embodiments of the invention, may be used in any desired combinations, subcombinations, and the like, without departing from the invention. Those skilled in the relevant art also will recognize that numerous variations and modifications may be made to the embodiments described above without departing from the scope of the present invention, as defined by the appended claims.

What is claimed is:

- 1. A cleat, comprising:
- a cleat base;
- a cleat free end:
- a first side edge extending between the cleat base and the 20 cleat free end, wherein the first side edge has a first concave exterior surface over at least 50% of its height dimension between the cleat base and the cleat free end;
- a second side edge extending between the cleat base and the cleat free end:
- a third side edge extending between the cleat base and the cleat free end;
- a first junction region joining the first side edge and the second side edge;
- a second junction region joining the first side edge and the 30 third side edge; and
- a third junction region joining the second side edge and the third side edge,
- wherein at least 90% of a perimeter length around the cleat at a first cleat height location between the cleat base and the cleat free end is made up of the first, second, and third side edges, wherein a remainder of the perimeter length around the cleat at the first cleat height location constitutes length associated with the first, second, and third junction regions, and wherein the first cleat height location is located between 0.1H and 0.9H, wherein H is a cleat height dimension in a direction from the cleat base to the cleat free end.
- 2. A cleat according to claim 1, wherein the second side edge is flat or concave over at least 50% of its height dimension between the cleat base and the cleat free end, and wherein the third side edge is flat or concave over at least 50% of its height dimension between the cleat base and the cleat free end.
- **3**. A cleat according to claim **2**, wherein at least 95% of a 50 perimeter length around the cleat base is made up of the first, second, and third side edges.
- **4.** A cleat according to claim **2**, wherein at least 95% of a perimeter length around the cleat free end is made up of the first, second, and third side edges.
- **5.** A cleat according to claim **1**, wherein the first concave exterior surface of the first side edge extends over at least 75% of the first side edge height dimension.
- **6.** A cleat according to claim **1**, wherein the first concave exterior surface of the first side edge extends over at least 90% 60 of the first side edge height dimension.
- 7. A cleat according to claim 6, wherein the second side edge is flat or concave over at least 75% of its height dimension between the cleat base and the cleat free end, and wherein the third side edge is flat or concave over at least 75% of its 65 height dimension between the cleat base and the cleat free end.

18

- **8**. A cleat according to claim **1**, wherein an opening is defined extending through the cleat from the second side edge to the third side edge.
- **9**. A sole structure for an article of footwear, comprising: an outsole base member; and
- a first cleat extending from the outsole base member, wherein the first cleat includes: (a) a cleat base; (b) a cleat free end; (c) a first side edge extending between the cleat base and the cleat free end, wherein the first side edge has a first concave exterior surface over at least 50% of its height dimension between the cleat base and the cleat free end; (d) a second side edge extending between the cleat base and the cleat free end; (e) a third side edge extending between the cleat base and the cleat free end; (f) a first junction region joining the first side edge and the second side edge; (g) a second junction region joining the first side edge and the third side edge; and (h) a third junction region joining the second side edge and the third side edge,
- wherein at least 90% of a perimeter length around the first cleat at a first cleat height location between the cleat base and the cleat free end is made up of the first, second, and third side edges, wherein a remainder of the perimeter length around the first cleat at the first cleat height location constitutes length associated with the first, second, and third junction regions, and wherein the first cleat height location is located between 0.1H and 0.9H, wherein H is a height dimension of the first cleat in a direction from the cleat base to the cleat free end.
- 10. A sole structure according to claim 9, wherein the first cleat is located in a forefoot area of the outsole base member.
- 11. A sole structure according to claim 9, wherein the outsole base member further includes a second cleat that is separate from the first cleat, wherein the second cleat includes: (a) a cleat base; (b) a cleat free end; (c) a first side edge extending between the cleat base and the cleat free end, wherein the first side edge has a first concave exterior surface over at least 50% of its height dimension between the cleat base and the cleat free end; (d) a second side edge extending between the cleat base and the cleat free end; (e) a third side edge extending between the cleat base and the cleat free end; (f) a first junction region joining the first side edge and the second side edge; (g) a second junction region joining the first side edge and the third side edge; and (h) a third junction region joining the second side edge and the third side edge,
 - wherein at least 90% of a perimeter length around the second cleat at a second cleat height location between the cleat base of the second cleat and the cleat free end of the second cleat is made up of the first, second, and third side edges of the second cleat, wherein a remainder of the perimeter length around the second cleat at the second cleat height location constitutes length associated with the first, second, and third junction regions of the second cleat, and wherein the second cleat height location is located between 0.1H₂ and 0.9H₂, wherein H₂ is a height dimension of the second cleat in a direction from the cleat base of the second cleat to the cleat free end of the second cleat.
- 12. A sole structure according to claim 11, wherein each of the first cleat and the second cleat is located in a forefoot area of the outsole base member.
- 13. A sole structure according to claim 12, wherein each of the first side edges of the first cleat and the second cleat is oriented so that it faces a rear heel area of the outsole base member.

- 14. A sole structure according to claim 9, wherein the first cleat is oriented so that the first side edge faces a rear heel area of the outsole base member.
 - **15**. A sole structure for an article of footwear, comprising: an outsole component that includes:
 - a first lateral perimeter cleat located along a lateral side of a forefoot area or a midfoot area of the outsole component, wherein the first lateral perimeter cleat includes a concave rear edge that faces a rear heel direction of the sole structure, and wherein the first lateral perimeter cleat has a three-sided shape including two side edges engaged with and extending forward from the concave rear edge of the first lateral perimeter cleat,
 - a second lateral perimeter cleat located along the lateral side of the outsole component and forward of the first lateral perimeter cleat, wherein the second lateral perimeter cleat includes a concave rear edge that faces the rear heel direction of the sole structure, and wherein the second lateral perimeter cleat has a three-sided shape including two side edges engaged with and extending forward from the concave rear edge of the second lateral perimeter cleat,
 - a first medial perimeter cleat located along a medial side of a forefoot area or a midfoot area of the outsole 25 component, wherein the first medial perimeter cleat includes a concave rear edge that faces the rear heel direction of the sole structure, and wherein the first medial perimeter cleat has a three-sided shape including two side edges engaged with and extending forward from the concave rear edge of the first medial perimeter cleat, and
 - a second medial perimeter cleat located along the medial side of the outsole component and forward of the first medial perimeter cleat, wherein the second medial 35 perimeter cleat includes a concave rear edge that faces the rear heel direction of the sole structure, and wherein the second medial perimeter cleat has a three-sided shape including two side edges engaged with and extending forward from the concave rear edge of 40 the second medial perimeter cleat.
- **16**. A sole structure according to claim **15**, wherein the outsole component further includes:
 - a third lateral perimeter cleat located along the lateral side of the outsole component and forward of the second 45 lateral perimeter cleat, wherein the third lateral perimeter cleat includes a concave rear edge that faces the rear heel direction of the sole structure, and wherein the third lateral perimeter cleat has a three-sided shape including two side edges engaged with and extending forward 50 from the concave rear edge of the third lateral perimeter cleat, and
 - a third medial perimeter cleat located along the medial side of the outsole component and forward of the second medial perimeter cleat, wherein the third medial perimeter cleat includes a concave rear edge that faces the rear heel direction of the sole structure, and wherein the third medial perimeter cleat has a three-sided shape including two side edges engaged with and extending forward from the concave rear edge of the third medial perimeter 60 cleat.
- 17. A sole structure according to claim 16, wherein the outsole component further includes:
 - a first intermediate cleat having at least a portion located between the first lateral perimeter cleat and the first 65 medial perimeter cleat, wherein the first intermediate cleat includes a concave rear edge that faces the rear heel

20

- direction of the sole structure, and wherein the first intermediate cleat has a three-sided shape including two side edges engaged with and extending forward from the concave rear edge of the first intermediate cleat,
- a second intermediate cleat having at least a portion located between the second lateral perimeter cleat and the second medial perimeter cleat, wherein the second intermediate cleat includes a concave rear edge that faces the rear heel direction of the sole structure, and wherein the second intermediate cleat has a three-sided shape including two side edges engaged with and extending forward from the concave rear edge of the second intermediate cleat, and
- a third intermediate cleat having at least a portion located between the third lateral perimeter cleat and the third medial perimeter cleat, wherein the third intermediate cleat includes a concave rear edge that faces the rear heel direction of the sole structure, and wherein the third intermediate cleat has a three-sided shape including two side edges engaged with and extending forward from the concave rear edge of the third intermediate cleat.
- 18. A sole structure according to claim 17, wherein the first lateral perimeter cleat is located rearward from the first medial perimeter cleat, the second lateral perimeter cleat is located rearward from the second medial perimeter cleat, and the third lateral perimeter cleat is located rearward from the third medial perimeter cleat.
- 19. A sole structure according to claim 15, wherein the outsole component further includes a base plate, and wherein the first and second lateral perimeter cleats and the first and second medial perimeter cleats extend from the base plate.
- 20. A sole structure according to claim 19, wherein the first and second lateral perimeter cleats and the first and second medial perimeter cleats are formed as a unitary, one-piece construction with the base plate.
- 21. A sole structure according to claim 19, wherein the outsole component further includes a rear heel support extending upward from the base plate at a rear heel area of the outsole component.
- 22. A sole structure according to claim 21, wherein the rear heel support includes a top edge or point, a first side edge extending downward from the top edge or point to a medial, bottom, rear heel area of the outsole component, and a second side edge extending downward from the top edge or point to a lateral, bottom, rear heel area of the outsole component, and wherein each of the first side edge and the second side edge includes a linear segment at least 2 inches long.
- 23. A sole structure according to claim 15, wherein the outsole component further includes a base plate and a rear heel support extending upward from the base plate at a rear heel area of the outsole component, and wherein the first and second lateral perimeter cleats and the first and second medial perimeter cleats extend from the base plate, wherein the first and second lateral perimeter cleats, the first and second medial perimeter cleats, and the rear heel support are formed as a unitary, one-piece construction with the base plate.
- **24**. A sole structure according to claim **15**, wherein the outsole component further includes a base plate, and wherein the base plate has a matrix structure that is exposed at a bottom surface of the outsole component.
- **25**. A sole structure according to claim **15**, wherein the outsole component further includes a base plate, and wherein the base plate has a matrix structure including:
 - a first plurality of rib elements extending in a front-to-rear direction of the outsole component,

- a second plurality of rib elements extending in a rear medial-to-forward lateral direction of the outsole component, and
- a third plurality of rib elements extending in a forward medial-to-rear lateral direction of the outsole component
- **26**. A sole structure according to claim **25**, wherein the matrix structure includes:
 - a first plurality of triangular shaped recesses located between adjacent portions of the first, second, and third pluralities of rib elements on a medial side of the outsole component,
 - a second plurality of triangular shaped recesses located between adjacent portions of the first, second, and third pluralities of rib elements on a lateral side of the outsole component, and
 - a plurality of triangular shaped openings extending through the outsole component, wherein the triangular shaped openings are located between adjacent portions 20 of the first, second, and third pluralities of rib elements, and wherein the plurality of triangular shaped openings are located between the first plurality of triangular shaped recesses and the second plurality of triangular shaped recesses.
- 27. A sole structure according to claim 25, wherein the matrix structure extends from a lateral, rear heel area of the outsole component, through an arch area of the outsole component, and through a forefoot area of the outsole component.
- 28. A sole structure according to claim 15, wherein each of the first lateral perimeter cleat, the second lateral perimeter cleat, the first medial perimeter cleat, and the second medial perimeter cleat has a structure including: (a) a cleat base; (b) a cleat free end; (c) a first side edge extending between the 35 cleat base and the cleat free end, wherein the first side edge has a first concave exterior surface over at least 50% of its height dimension between the cleat base and the cleat free end; (d) a second side edge extending between the cleat base and the cleat free end; (e) a third side edge extending between $_{40}$ the cleat base and the cleat free end; (f) a first junction region joining the first side edge and the second side edge; (g) a second junction region joining the first side edge and the third side edge; and (h) a third junction region joining the second side edge and the third side edge, and wherein at least 90% of 45 a perimeter length around the cleat at a cleat height location between the cleat base and the cleat free end is made up of the first, second, and third side edges of the second cleat.

22

- 29. A sole structure for an article of footwear, comprising: an outsole component including a base plate at least in a forefoot area of the outsole component, wherein the base plate has a matrix structure including:
 - a first plurality of rib elements extending in a first direction.
 - a second plurality of rib elements extending in a second direction, and
 - a third plurality of rib elements extending in a third direction of the outsole component; and
- a three sided cleat extending from the base plate, wherein the three sided cleat includes a cleat base, a cleat free end, a first side edge extending between the cleat base and the cleat free end, a second side edge extending between the cleat base and the cleat free end, and a third side edge extending between the cleat base and the cleat free end, wherein one of the second plurality of rib elements aligns with a junction region between the first side edge and the second side edge, wherein one of the third plurality of rib elements aligns with a junction region between the first side edge and the third side edge, and wherein one of the first plurality of rib elements aligns with a junction region between the second side edge and the third side edge.
- 30. A sole structure according to claim 29, wherein the base plate and the three sided cleat are formed as a unitary, one-piece construction such that:
 - (a) said one of the second plurality of rib elements that aligns with the junction region between the first side edge and the second side edge of the three sided cleat forms a unitary, one-piece structure extending from the base plate to the cleat free end,
 - (b) said one of the third plurality of rib elements that aligns with the junction region between the first side edge and the third side edge of the three sided cleat forms a unitary, one-piece structure extending from the base plate to the cleat free end, and
 - (c) said one of the first plurality of rib elements that aligns with the junction region between the second side edge and the third side edge of the three sided cleat forms a unitary, one-piece structure extending from the base plate to the cleat free end.
 - 31. A sole structure according to claim 29, wherein the first direction is a front-to-rear direction of the outsole component, wherein the second direction is a rear medial-to-forward lateral direction of the outsole component, and wherein the third direction is forward medial-to-rear lateral direction of the outsole component.

* * * * *